The protein fingerprinting and genetic variations among different genotypes of Aegilops belonging to four sections

Alaa Aljrf^{1*}, Bassam Ksibe², Lina Alnaddaf³ and Maysoun Saleh⁴

¹Master in Biology Department, Faculty of Science, Albaath University, Homs, Syria. ²Professor in Biology Department, Faculty of Science, Albaath University, Homs, Syria. ³ Doctor in Field Crops Department, Faculty of Agriculture, Albaath University, Homs, Syria. ⁴ Doctor in Genetic Resources Department, General Commission for Scientific Agricultural Research GCSAR, Damascus, Syria.

*Corresponding author: <u>alaa.aljrf@gmail.com</u>

Received: October 21th 2020; Accepted: November 11th 2020

Abstract

The significance of this research is the study of genetic relationships between genotypes which is one of the first steps taken to preserve genetic diversity from loss and one of the key processes for supporting and developing breeding programs. Wheat-associated wild Aegilops species are considered to be an important source of genetic resources and to reveal the relationships and genetic variations between genotypes by using storage proteins to obtain a protein fingerprint. The research aims to obtain a protein fingerprint of genotypes of the genus Aegilops using the methods of Acid Polyacrylamide Gel Electrophoresis (A-PAGE) and Sodium Dodecyl Sulphate Polyacrylamide Electrophoresis (SDS-PAGE) and to study genetic diversity using storage proteins as biochemical markers. Laboratory work was carried out in 2019, at the Atomic Energy Commission in Damascus. Ten genotypes belong to four sections (Sitopsis, Aegilops, Cylindropyrum, and Vertebrata) were compared (Ae.var speltoides, Ae.speltoides, Ae.tauschii, Ae.umbellulata, Ae.vavilovii, Ae.biuncialis, Ae.cylindrica, Ae.geniculata, Ae.kotschyi, Ae.peregrina). Using Unweighted Pair Group Mean Arithmetic Average (UPGMA) to illustrate the genetic relationships between the studied genotypes, the phylogenetic tree was constructed based on data on gliadin and glutenin proteins. The total band count was 110 lines. The smallest number of bands was Ae.cylindrica (30), whereas the highest number of bands was 44 (Ae.peregrina). The least genetic distance was observed among the genotypes (Ae.speltoides and Ae.tauschii) (0.24), while the most genetic distance was observed among the genotypes (Ae.biuncialis and Ae.tauschii) (0.48). The lowest average of Percent Disagreement Values (PDVs) was for Ae.kotschyi and Ae.speltoides (0.32), meaning they are the closest to the rest of the genotypes studied. While the highest average of (PDVs) was for Ae.biuncialis (0.37), meaning it is the farthest to the rest of the genotypes studied.

Keywords: Genetic Relationships, Aegilops, Protein Fingerprint, A-PAGE, SDS-PAGE.

Introduction

Wild relatives of wheat played an important role in the evolution of varieties with desirable characteristics and have been able to persevere and adapt under different environmental conditions (Jiang et al.,1993; Nevo et al., 2002) making them a rich source of many valuable genes, especially after wheat crops have been exposed to many biotic and abiotic stresses (Medouri et al., 2015), and the erosion of the plant genetic base for this crop under climate and environmental fluctuations and human activities.

Like genus Aegilops, which was known as Goatgrass, which is an annual autogamous weed, belonging to

Poaceae, grows at different heights around the Mediterranean basin and in West and Central Asia (Van Slageren, 1994; Kilian et al., 2011; Al-ahmar et al., 2010). It is the genus most closely related to Triticum L. which includes the cultivated wheat Triticum aestivum (Raskina et al., 2004) and the species of Aegilops are considered a suitable genetic resource for the genetic improvement of wheat, resistant to diseases and pests (Gill et al., 1985) and have desirable agricultural traits such as tolerance to drought and salinity (Colmer et al., 2006; Molnár et al., 2004), which explains their ability to persevere and adapt under stressful environmental conditions (Nevo et al., 2002). They are also excellent sources

of resistance to rust and rot (Damania & Pecetti, 1990; Dimov *et al.*, 1993).

Depending on the phenotype and analysis of the genome, it was divided into five sections: (Aegilops, Comopyrum, Cylindropyrum, Sitopsis, and Vertebrata) contains different Ploidy Levels:

- 1. Diploid: (Diploid 2n = 14).
- 2. Polyploid: It was divided into two groups of tetraploid (Tetraploid 2n = 28) and hexaploid (Hexaplpid 2n = 42).

Aegilops L. has various genome groups (D, B = S, U, C, T, N, and M) (Van Slageren, 1994). Research has shown that Ae.speltoides was the main donor of the B genome to polyploid wheat and the donor for the D genome is Ae.tauschii (Huang et al., 2002).

Therefore, it is important to study the genetic variation between the *Aegilops* species, for their conservation and use in improving the cultivated wheat (Monneveux *et al.*, 2000; Hatami *et al.*, 2010). Storage proteins in grains are important biochemical markers that can be used in the detection of genetic variances, as they reflect part of the genetic information of the genotype, and have been used to assess different germplasm and identify varieties in crops (Alnaddaf, 2013; Payne *et al.*, 1984; Belhais, 2014).

Storage proteins have been the focus of many genetic studies, due to their economic importance and being one of the taxonomic tools in plants, and the wild relatives showed great genetic diversity in storage proteins, which had a major role in the technological properties of wheat (Ciaffi et al., 1993; Nevo & Payne, 1987). Gluten is the main storage protein in wheat grains and its wild relatives, consisting of the proteins gliadin (alcohol-soluble) and glutenin (insoluble) (Carrillo et al., 1990), representing about 80% of the total proteins in the grain (Bietz & Wall, 1973) and has been known for its role in determining the properties of the dough and the quality of bread for a long time (MacRitchie, 1992). Gliadin is a monomeric polypeptide protein that contributes to the physical properties of the dough. It is classified into four groups of (α, β, γ) and ω) based on molecular mobility at low pH in Acid Polyacrylamide Gel Electrophoresis (pH=3.1)(Wrigley et al., 2006; Woychik et al., 1961; Bushuk & Zillman, 1978). The glutenin is a polymeric protein stabilized by disulfide bonds, and it separated into two groups, high molecular weight (HMW) and low molecular weight (LMW) subunits glutenin after being treated with reducing agents such as mercaptoethanol (Payne & Lawrence, 1983) and it is responsible for the elasticity characteristic of the dough (Payne et al., 1984; Mir Ali, 2000).

Gliadins are encoded by six Gli loci mapped to the short arms of homoeologous group 1(Gli-A1, Gli-B1, and Gli-D1) and group 6 (Gli-A2, Gli-B2, and Gli-D2) chromosomes (Payne, 1987) and The HMW-GS are encoded by genes at three loci, Glu-A1, Glu-B1 and Glu-D1, located on the long arms of homoeologous group1 chromosomes, while The LMW-GS are encoded by genes at three loci, (Glu-A3, Glu-B3, Glu-D3), located on the short arms of the same chromosome (Singh & Shepherd, 1988).

Storage proteins are good markers in assessing taxonomic relationships and phylogenetic evolution at different levels of species (Kharazian, 2008), and were used to study the genetic variation in wild relatives of wheat (*Ae.tauschii, Ae.speltoides, T.monococcum* L., *T.uartu*) (Xynias *et al.*, 2007).

The *Aegilops* L. species showed great genetic diversity in the gliadin and glutenin proteins (Nevo, & Payne, 1987; Ciaffi *et al.*, 1993). Electrophoresis techniques made it possible to identify storage proteins in grains (Belhais, 2014).

Most research has focused on studying genetic diversity using A-PAGE to separate gliadin and SDS-PAGE to separate glutenin into their smaller parts (Murray, 1997) depending on their molecular weight in an electric field, where different protein patterns appear as bands which become visible after staining (Godfrey, 2008), A-PAGE and SDS-PAGE provide an easy and convenient method to obtain protein fingerprinting for varieties. It can also be used to give a comprehensive knowledge of storage proteins in wild wheat grains. (Sofalian & Valizadeh, 2009) confirmed in their results that there was genetic variation between storage proteins in the seeds of wild relatives, and it could be used in genetic improvement programs.

This research aims to obtain a protein fingerprint of genotypes of the genus *Aegilops* using the methods of Acid Polyacrylamide Gel Electrophoresis (A-PAGE) and Sodium Dodecyl Sulphate Polyacrylamide Electrophoresis (SDS-PAGE) and to study genetic diversity using storage proteins as biochemical markers.

Materials and Methods

Plant material: grains of Ten genotypes belong to Genus *Aegilops* were obtained from The International Center for Agricultural Research in the Dry Areas (ICARDA), which belong to four sections (*Sitopsis, Aegilops, Cylindropyrum* and *Vertebrata*) (Table 1).

Table (1): The names of the studied genotypes

The sequence	Name of genotype	Genome	Ploidy level	Section
1	Ae.var speltoides	SS	2x=14	Citansis
2	Ae.speltoides	SS	2x=14	Sitopsis
3	Ae.tauschii	DD	2x=14	Vertebrata
4	Ae.umbellulata	UU	2x=14	Aegilops
5	Ae.vavilovii	DDSSMM	6x=42	Vertebrata
6	Ae.biuncialis	UUMM	4x=28	Aegilops
7	Ae.cylindrica	DDCC	4x=28	Cylindropyrum
8	Ae.geniculata	UUMM	4x=28	
9	Ae.kotschyi	UUSS	4x=28	Aegilops
10	Ae.peregrina	UUSS	4x=28	

Analytical methods: Two electrophoretic systems were utilized A-PAGE (Bushuk and Zillman, 1978) for gliadin separation and the SDS-PAGE (laemmli, 1970) for glutenin separation as modified by (Mir Ali, 2000).

About 20 mg of crushed grains were used from each genotype. The analysis was performed in the laboratory of biotechnology department at the atomic energy commission in Damascus-Syria in 2019.

A-PAGE: The gliadin was extracted by adding 66μl of 70% ethanol, vortexed and mixed for 2.30 h then centrifuged for 15 min at 14000 rpm in an Eppendorf microcentrifuge. 100μl from the supernatant were added to 85μl of 60% (v/v) glycerin and a 25μl of the mixture was run on 6% Acrylamide gels (160x180x1.5mm) using an electric current of 50 mA for 3.30 h. The gel contained 10 genotypes in addition to the Canadian variety Marquis as a control.

SDS-PAGE: The glutenin was extracted from the residue of the same samples and fractionated in 10%(w/v) polyacrylamide gels. Each sample was suspended in a medium containing 2%(w/v) SDS, 5%(w/v) 2-mercaptoethanol, 0.001%(w/v) pyronin, 10%(v/v) glyceroland 1M Tris-HCl (pH 6.8). The samples were left for 90 minutes at room temperature and shaken every 15 minutes. Later, they were placed in a boiling water bath for 3 min and allowed to cool and were put in an Eppendorf microcentrifuge for 15 min at 14000 rpm. $25\mu \text{l}$ from each sample were placed into each slot of a vertical slab gel electrophoresis unit. A constant current of 25 mA was used to run two gels for 17 h.

Gels were stained overnight with 0.01% (w/v) Coomassie Brilliant Blue, Ethanol and acetic acid (10%) and then distained overnight in water for at least 24 h.

Data analysis: The data obtained from A-PAGE and SDS-PAGE were scored for the presence (1) or

absence (0) of the bands and entered in a data matrix. Followed by setting up the cluster analysis by Unweighted Pair Group Mean Arithmetic Average method (UPGMA) and Percent Disagreement Values (PDVs) of the STATISTICA program were used to construct the matrixes and the dendrograms (STATSOFT Inc. 2003) to illustrate the genetic relationships among the studied genotypes, and the phylogenetic tree was constructed based on data on gliadin and glutenin proteins.

Results and Discussion

The number of protein bands obtained from the data of A-PAGE and SDS-PAGE for the studied genotypes ranged from 30 to 44 bands. The total number of bands was 351, with an average of 35.1. The total bands count were 110 lines, which were analysed to get cluster analysis resulting from the protein bands obtained from the two previous methods. The lowest number of bands was 30 (*Ae.cylindrica*), whereas the highest number of bands was 44 (*Ae.peregrina*) shown in (Table 2).

The obtained data were combined, analyzed and presented in one dendrogram showing that species were grouped in two main clusters (Fig. 1). The first included (Ae.var speltoides, Ae.kotschyi, Ae.speltoides, Ae.tauschii, Ae.cylindric, Ae.vavilovii) and the second included all remaining species (Ae.geniculata, Ae.biuncialis, Ae.umbellulata, Ae.peregrina). The least genetic distance was observed among the genotypes (Ae.speltoides and Ae.tauschii) PDV=0.24, while the most genetic distance was observed among the genotypes (Ae.biuncialis and Ae.tauschii) PDV=0.48. The lowest average of PDVs was for Ae.kotschyi and Ae.speltoides (0.32), meaning they are the closest to the rest of the studied genotypes, while the highest average of PDVs was for Ae.biuncialis (0.37), meaning it is the farthest to the rest of the studied genotypes.

Table (2): Number of total bands obtained from A-PAGE and SDS-PAGE

The sequence	Name of genotype	Number of bands		
1	Ae.varspeltoides	34		
2	Ae.speltoides	31		
3	Ae.tauschii	35		
4	Ae.umbellulata	40		
5	Ae.vavilovii	35		
6	Ae.biuncialis	33		
7	Ae.cylindrica	30		
8	Ae.geniculata	34		
9	Ae.kotschyi	35		
10	Ae.peregrina	44		

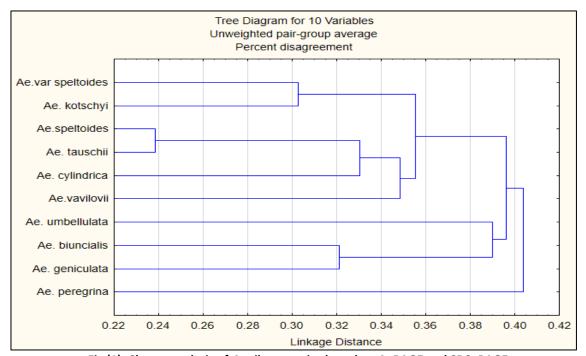


Fig (1): Cluster analysis of Aegilops species based on A-PAGE and SDS-PAGE

Our results were in agreement with many previous studies that proved a close genetic relationship between the D-genome and the S-genome (Haider et al., 2010; Huang et al., 2002), in which diploid Ae.tauschii (DD) grouped close to the diploid Ae.speltoides (SS) and they were the most closely related species to each other based on protein analysis (PDV=0.24), and this agrees with previous studies, (Haider et al., 2015) and (Monneveux et al., 2000) revealed that Ae.tauschii was the closest genetically to Ae.speltoides, and (Alnaddaf et al.,2013) also showed that Ae.speltoides separated from the remaining four genotypes from the Sitopsis section and grouped with Ae.tauschii. In addition, both of these genotypes contributed to the origin of

wheat T. aestivum (McFadden & Sears, 1946) and proved to be important in the cultivation of cultivated wheat. The storage protein analysis showed Ae.umbellulata clustering with Ae.biuncialis and Ae.geniculata in the second cluster of the cluster analysis (Fig. 1) where Ae.umbellulata was a parent for these two genotypes, and it reflected the genetic relationships between Ae.biuncialis Ae.geniculata, which appeared as sister species and they belong to the same section because they had the same genome formula (UUMM) as suggested by (Resta et al., 1996), and this was in agreement with (Al-ahmar et al., 2010) and (Alnaddaf, 2013), where these two genotypes were closely related genetically.

Table (2): The PDVs matrix based on the combination of A-PAGE and SDS-PAGE

	i abic (<u></u>	75 IIIatiix B	asca on the	Combina	1011 01 74 17	AGE alla 3D	JIAGE		
Variable	Ae.var speltoides	Ae.speltoides	Ae. tauschii	Ae.umbellulata	Ae.vavilovii	Ae. biuncialis	Ae. cylindrica	Ae.geniculata	Ae.kotschyi	Ae.peregrina
Ae.var speltoides	0.00									
Ae.speltoides	0.36	0.00								
Ae. tauschii	0.36	0.24	0.00							
Ae.umbellulata	0.39	0.34	0.47	0.00						
Ae.vavilovii	0.36	0.33	0.37	0.41	0.00					
Ae. biuncialis	0.38	0.46	0.48	0.38	0.42	0.00				
Ae. cylindrica	0.41	0.31	0.35	0.36	0.35	0.42	0.00			
Ae. geniculata	0.37	0.36	0.36	0.40	0.41	0.32	0.32	0.00		
Ae. kotschyi	0.30	0.35	0.33	0.41	0.35	0.42	0.33	0.36	0.00	
Ae. peregrina	0.46	0.43	0.45	0.40	0.38	0.39	0.38	0.42	0.32	0.00
Average	0.34	0.32	0.34	0.36	0.34	0.37	0.33	0.33	0.32	0.36

In addition, Ae.biunacialis and Ae.geniculata were sister species in the phylogenetic trees of (Haider et al.,2010) based on DNA analysis data using RAPDs and ISSRs, (Badaeva et al.,2004; Bandou et al., 2009) confirmed that the genome (UUMM) of Ae.biuncialis and Ae.geneculata originated from the diploid ancestors Ae.umbellulata (UU) and Ae.comosa (MM) and this agreed with our current study.

The results of this study were in agreement with (Alnaddaf et al., 2012) and (Haider et al., 2012) of the presence of genetic relations between the genotypes Ae.umbellulata, Ae.biuncialis and Ae.geniculata, which were classified in U-genome group, they were clustered in the same cluster in the tree except for Ae.peregrina and Ae.kotschyi, which separated into different clusters although they were classified within the same section Aegilops (Van Slageren, 1994) and had very similar genome (UUSS) (Przewieslik-Allen et al., 2018).

The tetraploid *Ae.kotcshyii* (SSUU) was clustered close to *Ae.varspeltoides* (SS) in this studied phylogenetic tree, and the reason for this genetic affinity may be attributed to *Ae. var speltoides* being one of the parents of *Ae.kotschyii* because any genotype of *Sitopsis* may be the donor of the Sgenome (Yamane & Kawahara, 2005), and morphological, geographic, and cellular studies, as well as molecular evidences, assumed that *Ae.speltoides* or other genetically close relatives were nominated as donors to the S-genome (Alnaddaf, 2013; Dovrak & Zhang, 1992).

Both (Alnaddaf *et al.*, 2012) and (Konstantinos & Bebeli, 2010) indicated the presence of a genetic

relationship between *Ae.kotcshyi* and *Ae.umbellulata*, and this was in disagreement with the results of our studied phylogenetic tree, where *Ae.kotcshyi* separated from *Ae.umbellulata* (PDV=0.41) although that *Ae.umbellulata* was the donor parent of U-genome, and *Ae.kotcshyi* was closer to the second donor parent of S-genome (PDV=0.30).

The diploid *Ae.tauschii* (DD) was a parent of tetraploid *Ae.cylindrica* (DDCC) (Wan *et al.*, 2002) and they had similar genomes according to (Jaaska, 1981; Kharazian, 2008), the results of the studied phylogenetic tree analysis reflected these facts. It showed the existence of a genetic relationship between these genotypes *Ae.tauschii* and *Ae.cylindrica*, where they clustered in same cluster, (Alnaddaf *et al.*, 2013) confirmed that based on ITS data.

In addition, a genetic relationship has been shown between *Ae.cylindrica* (DDCC) and the hexaploid *Ae.vavilovii* (DDSSMM) and this relationship can be explained by the similarity in the D genome of the common ancestor *Ae.tauschii* (Przewieslik-Allen *et al.*, 2018) that clustered closely in the same cluster with these two genotypes in the studied tree.

The most genetic distance was observed among the genotypes *Ae.biuncialis* and *Ae.tauschii* (PDV=0.48), (Yen *et al.* 2005) indicated that the results of molecular analyses have shown that genomes S, B, D and A were much more closely related to each other than to other genomes (Dvorak and Zhang, 1990).

The results of our study of gliadin and glutenin proteins were consistent with the classification by

(Van Slageren, 1994) of the genus *Aegilops*, as A-PAGE and SDS-PAGE technology reflect the genetic similarities between *Aegilops* species belonging to each of the four sections. The results showed that the genotypes with similar genomes were clustered close together in the phylogenetic tree that showed relationships between them may have the same parents and this corresponds to (Baranduzi *et al.*, 2013).

It was believed that the genetic variation present within each genetic loci was responsible for the variances between species with regard to protein quality expressed by gene silencing or genes that did not express themselves (Mir Ali *et al.*, 1999). The genetic variation that can be detected at the level of proteins is based on allelic variation for a limited number of protein loci responsible for gliadins and glutenins (Haider *et al.*, 2010).

Conclusions

This study showed the efficiency of the A-PAGE and SDS-PAGE electrophoresis methods applied to storage proteins in detecting the genetic differences between the studied genotypes of the genus Aegilops, indicating the possibility of using these proteins (gliadin and glutenin) as useful biochemical markers for studying relationships and genetic diversity. Our study confirmed the genetic relationships between the genotypes of the genus Aegilops according to their genetic origin. The PDVs matrix of the genetic distance between the Ae.speltoides and Ae.tauschii reflected a strong relationship between the S and D genomes.

References

- Al-ahmar, E., Haider, N., Azzam. H. (2010). Genetic Relationships among *Aegilops* L. Species Using DNA Molecular Markers. General Commission for Scientific Agricultural Research, Gene Bank Division, Faculty of Agriculture, Damascus University. Syria.
- Alnaddaf, L.M., M.Y. Moualla and N. Haider, (2012).

 Resolving Genetic Relationships among *Aegilops*L. and *Triticum* L. species using analysis of Chloroplast DNA by Cleaved Amplified Polymorphic Sequence (CAPS). Maxwell Scientific Organization, In Press.
- Alnaddaf L. M., M.Y. Moualla and N. Haider, (2013). Phylogenetic relationships among *Triticum* L. and *Aegilops* L. species based on the internal transcribed spacer sequences of nrDNA (ITS). Tishreen University Journal for Research and Scientific Studies Biological Sciences Series Vol. (35) No. (5)

- Alnaddaf, L.M. (2013). Resolving Genetic Relationships among *Aegilops* L. and *Triticum* L. species using molecular markers. Tishreen University.
- Badaeva, E.D., Amosova A.V., Samatadze T.E., Zoshchuk, S.A., Chikida, N., Zelenin, A.V., Raupp, W.J., Friebe, B., Gill, B.S. (2004). Genome differentiation in Aegilops. 4. Evolution of Ugenome cluster. Plant Systematics and Evol. 246:45–76.
- Belhais, Iman (2014). Morphophysiological and biochemical study of durum wheat plant cultivated in Algeria Triticum durum Desf. Melanopus variety. Master thesis in plant biology and physiology, Department of Plant Biology and Ecology, Faculty of Natural and Life Sciences, University of Constantine in Algeria.
- Bandou, H., Rodriguez-Quijano, M., Carrillo, J.M.,
 Branlard, G., Zaharieva, M., Monneveux, P.
 (2009). Morphological and genetic variation in
 Aegilops geniculata from Algeria. Plant
 Systematic and Evolution. 277:85–97.
- Baranduzi, A. J., Sofalian, O., Zakaria, R. A., Asghari, A., & Skokrpoor, M. (2013). Assessment of genetic diversity in Aegilops species in North-West of Iran using ISSR marker. *Agric Sci*, 23(2), 1.
- Bietz, J. A., & Wall, J. S. (1973). Isolation and characterization of gliadin-like subunits from glutenin. Cereal Chem, vol. 50, no. 5, pp. 537–547
- Bushuk, W., and Zillman, R. R. (1978). Wheat cultivar identification by gliadin electrophoregrams. I. Apparatus, method and nomenclature. Canadian journal of plant science, 58(2), 505-515.
- Carrillo JM, Rousset M, Qualset CO, Kasarda DD (1990). Use of recombinant inbred lines of wheat for study of associations of high molecular weight glutenin subunits alleles to quantitative triats. TheorAppl Genet 79:321-330.
- Ciaffi, M., Lafiandra, D., Porceddu, E., & Benedettelli, S. (1993). Storage-protein variation in wild emmer wheat (*Triticum turgidum* ssp. *dicoccoides*) from Jordan and Turkey. I. Electrophoretic characterization of genotypes. Theoretical and Applied Genetics, 86(4), 474-480.
- Colmer, T. D., Flowers, T. J., & Munns, R. (2006). Use of wild relatives to improve salt tolerance in wheat. Journal of Experimental Botany, 57(5), 1059-1078.

- Damania AB, Pecetti L (1990) Variability in a collection of *Aegilops* species and evaluation for yellow rust resistance at two locations in Northern Syria. J Genet Breed 44:97–102
- Dimov A, Zaharieva M, Mihova S (1993) Rust and powdery mildew resistance in *Aegilops* accessions from Bulgaria. In: Damania AB (ed) Biodiversity and wheat improvement. John Wiley & Sons, New York, pp 165–169.
- Dvorak, J., Zhang, H. B. (1990). Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proceedings of the National Academy of Sciences USA 87: 9640-9644.
- Dvořák, J., & Zhang, H. B. (1992). Application of molecular tools for study of the phytogeny of diploid and polyploid taxa in *Triticeae*. *Hereditas*, 116, 37-42.
- Jaaska, V. (1981). Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: Intraspecific differentiation in *Aegilops tauschii* and the origin of the D genome polyploids in the wheat group. Plant Systematics and Evolution, 137(4), 259-273.
- Gill, B. S., Sharma, H. C., Raupp, W. J., Browder, L. E., Hatchett, J. H., Harvey, T. L., ... & Waines, J. G. (1985). Evaluation of *Aegilops* species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly, and green bug. Plant Disease, 69(4), 314-316.
- Godfrey, D. (2008). The impact of nutrition on the gluten composition and processing quality of wheat. Ph. D. Summary Report . No. 11.P 1-43.
- Hatami-Maleki, H., Samizadeh, H., Asghari-Zakaria, R., Moshtaghi, N., Fazeli-Sangari, E. (2010). A comparative study of chromosome morphology among some accessions of *Aegilopscrassa*. Afr. J. Biotechnol.9:996–1000.
- Haider, N., Nabulsi, I., & MirAli, N. (2010). Comparison of the efficiency of A-PAGE and SDS-PAGE, ISSRs and RAPDs in resolving genetic relationships among *Triticum* and *Aegilops* species. Genetic resources and crop evolution, 57(7), 1023-1039.
- Haider, N., Ahmar, E., & Nabulsi, I. (2012). Molecular Characterization of Syrian Aegilops L. (Triticeae, Poaceae) Species Using ISSRs. Cereal Research Communications, 40(1), 24-33.
- Huang, S., Sirikhachornkit, A., Su, X., Faris, J., Gill, B., Haselkorn, R., & Gornicki, P. (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the *Triticum/Aegilops* complex and the evolutionary

- history of polyploid wheat. Proceedings of the National Academy of Sciences, 99(12), 8133-8138.
- IN Xynias, N. O. Kozub, I. A. Sozinov, and A. A. Sozinov (2007). Biochemical Markers in Wheat Breeding. International Journal of Plant Breeding Global Science Books, vol. 1, no. 1, p. 9, Feb.
- Jiang, J., Friebe, B., Gill, BS. (1993). Recent advances in alien gene transfer in wheat. Euphytica 73: 199-212.
- Kharazian, N. (2008). Chemotaxonomic studies on Aegilops L.(Poaceae) in Iran. *Pakistan Journal of Biological Sciences: PJBS*, 11(9), 1204-1211.
- Kilian, B., Mammen, K., Millet, E., Sharma, R., Graner, A., Salamini, F., Hammer, K., Özkan, H. (2011). Aegilops. In: Kole, C. (ed.), Wild Crop Relatives: Genomic and Breeding Resources Cereals. Springer, Heidelberg. Dordrecht, London, New York, pp. 1–76.
- Konstantinos, G.T. and P.J. Bebeli, (2010). Genetic diversity of Greek *Aegilops* species using different types of nuclear genome markers. Molecul. Phylog. Evol., 56: 951-961.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
- MacRitchie, F. (1992). Physicochemical properties of wheat proteins in relation to functionality. In Advances in food and nutrition research (Vol. 36, pp. 1-87). Academic Press.
- McFadden, E. S., & Sears, E. R. (1946). The origin of *Triticum spelta* and its free-threshing hexaploid relatives. Journal of Heredity, 37(3), 81-89.
- Medouri, A., Bellil, I., & Khelifi, D. (2015). Polymorphism at high molecular weight glutenin subunits and morphological diversity of *Aegilops geniculata* Roth collected in Algeria. Cereal research communications, 43(2), 272-283.
- Mir Ali, N., Arabi M. I. E. and Al-Safadi B. 1999a. High Molecular Weight Glutenin Subunits Composition Of Syrian Grown Bread Wheat And Its Relationships With Gluten Strength. *J. Genetics & Breeding*. 53: 237-245.
- Mir Ali, N., 2000. Heterogenity Within Old And Modern Durum And Bread Wheat Grown In Syria Using The A-PAGE And SDS-PAGE Electrophoresis Techniques. Plant Varieties & Seeds. 13: 149-157.
- Molnár, I., Gáspár, L., Sárvári, É., Dulai, S., Hoffmann, B., Molnár-Láng, M., et al. (2004). Physiological and morphological responses to water stress in *Aegilopsbiuncialis* and *Triticum aestivum*

- genotypes with differing tolerance to drought. Funct. Plant Biol. 31, 1149–1159.
- Monneveux P, Zaharieva M, Rekika D, Royo C, Nachit MM, Fonzo ND and Araus JL (2000). The utilisation of *Triticum* and *Aegilops* species for the improvement of durum wheat. Options Me'diterrane'ennes. Serie A Se'minairesMe'diterraneens XX: 71–81.
- Murray, R. K. (1997). Harper's Biochemistry. Second edition. P.33-80.
- Nevo, E., & Payne, P. I. (1987). Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel. Theoretical and Applied Genetics, 74(6), 827-836.
- Nevo, E., Korol, A., Fahima, T. (2002). Evaluation of Wild Emmer and Wheat Improvement. Population Genetic Resources and Genome Organization of Wheat's Progenitor *Triticum Dicoccoides*. Springer, Heidelberg.
- Payne P. I., Lawrence G.J. (1983). Catalogue of alleles for the complex loci, Glu-A1, Glu-B1 and Glu-D1 which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Research Communication 11, pp: 29-35.
- Payne, P. I., Holt, L. M., Jackson, E. A., & Law, C. N. (1984). Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 304(1120), 359-371.
- Payne, P. I. (1987). Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology, 38(1), 141-153.
- Przewieslik-Allen, A. M., Burridge, A. J., WILKINSON, P. A., Winfield, M. O., Shaw, D. S., McAusland, L., ... & Barker, G. L. (2018). Developing a high-throughput SNP-based marker system to facilitate the introgression of traits from *Aegilops* species into bread wheat (*Triticum aestivum*). Frontiers in plant science, 9, 1993.
- Raskina, O., Belyayev, A., & Nevo, E. (2004). Quantum speciation in *Aegilops*: molecular cytogenetic evidence from rDNA cluster variability in natural populations. *Proceedings of the National Academy of Sciences*, 101(41), 14818-14823.
- Resta, P., Zhang, G. B., Dubcovsky, J., &Dvořák, J. (1996). The origins of the genomes of *Triticum*

- biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. American journal of botany, 83(12), 1556-1565.
- Singh, N. K., and Shepherd, K. W. (1988). Linkage mapping of the genescontrolling endosperm proteins in wheat. 1. Genes on the short arms of group1 chromosomes. Theor. Appl. Genet. 66, 628–641.
- Sofalian, O., & Valizadeh, M. (2009). Investigation of seed storage proteins in some wild wheat progenitors using SDS-PAGE and Acid-PAGE. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(1), 179-182.
- Statsoft, Inc. (2003). STATISTICA (data analysis software system), version <u>www.statsoft.com</u>
- Van Slageren, M. W. (1994). Wild Wheats: A Monograph of *Aegilops* L. and *Amblypyrum* (Jaub. &Spach) Eig (*Poaceae*). Wageningen, the Netherlands: Agricultural University & International Center for Agricultural International Center for Agricultural Research in the Dry Areas, Aleppo, Syria.
- Woychik, J. H., Boundy, J. A., & Dimler, R. J. (1961). Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Archives of Biochemistry and Biophysics, 94(3), 477-482.
- Wrigley, C., Békés, F., and Bushuk, W. (2006). Gliadin and glutenin: the unique balance of wheat quality. American Association of Cereal Chemists, Inc (AACC).
- Wan, Y., Wang, D., Shewry, P., &Halford, N. (2002). Isolation and characterization of five novel high molecular weight subunit of glutenin genes from *Triticumtimopheevi* and *Aegilopscylindrica*. Theoretical and Applied Genetics, 104(5), 828-839.
- Yamane, K., Kawahara, T. (2005). Intra- and interspecific phylogenetic relationships among diploid *Triticum-Aegilops* species (*Poaceae*) based on base-pair substituation, indels, and microsatellites in chloroplastnoncoding sequences. Am. J. Bot. 92:1887–1898.
- Yen. C., Yang, J.-L., Yen, Y., (2005). Hitoshi Kihara, A skell Love and the modern genetic concept of the genera in the tribe *Triticeae* (*Poaceae*). ActaPhytotax. Sin. 43, 82–93.